Erratum

Measurement of Polydispersity of Ultra-Narrow Polymer Fractions by Thermal Field-Flow Fractionation

MARTIN E. SCHIMPF, MARCUS N. MYERS, and J. CALVIN GIDDINGS, Department of Chemistry, University of Utah, Salt Lake City, Utah 84112

[article in J. Appl. Polym. Sci., 33, 117-135 (1987)]

On page 122, Eq. (19) should read:

$$\zeta = \mu \left[\frac{1 + 3(\mu - 1) + (\mu - 1)^2}{1 + 3(\mu - 1) + 3(\mu - 1)^2 + (\mu - 1)^3} \right]$$
(19)

Eq. (20) should read:

$$\zeta = 1 + (\mu - 1) - 2(\mu - 1)^{2} + \cdots$$
 (20)

Lines 1 and 2 after Eq. (20) should read:

It is apparent from Eq. (19) that $\zeta < \mu$ when $(\mu - 1) < 1$; since this inequality applies generally to a Poisson distribution, we have in all cases $\zeta < \mu$. Also

Eq. (22) should read:

$$\zeta = 1 + (\mu - 1) - 3(\mu - 1)^2 + \cdots$$
 (22)

On page 123, the first line of text should read:

Like Eq. (19), Eq. (21) yields $\zeta < \mu$ for $(\mu - 1) < 1$. Figure 1 shows plots of μ

The third line of text should read:

away from the $\zeta = \mu$ line, both approach the $\zeta = \mu$

Journal of Applied Polymer Science, Vol. 2269-2270 (1987) © 1987 John Wiley & Sons, Inc.

Fig. 1. Plots of $\zeta = \overline{M}_Z / \overline{M}_W$ versus $\mu = \overline{M}_W / \overline{M}_N$ for Poisson and Gaussian number distributions.

Fig. 2. Plate height vs. carrier velocity. Linear polystyrene $\overline{M}_W = 170,000$; $\Delta T = 30$ K ($T_c = 294$ K).